Become a fan of Slashdot on Facebook

 



Forgot your password?
typodupeerror
×
Transportation

Ford, University of Michigan Open Next-Generation EV Battery Research Lab 67

cartechboy writes "Its no secret that one constraint on electric vehicle adoption is battery production capacity and cost. Right now battery costs add thousands of dollars in price tags on electric vehicles, so the race is on to gain capacity make cheaper batteries. Today, Ford and the University of Michigan are announcing an $8 million EV experimental battery research lab to try and accelerate this type of early testing. The lab, which will be on campus in Ann Arbor, Michigan, will allow automakers, battery makers and individual researchers to test battery cells earlier in the process than ever. The lab says it will have strict controls to protect each entity's individual intellectual property as the research in theory happens all in one place."
This discussion has been archived. No new comments can be posted.

Ford, University of Michigan Open Next-Generation EV Battery Research Lab

Comments Filter:
  • by iggymanz ( 596061 ) on Monday October 14, 2013 @02:06PM (#45123797)

    improving battery energy density has nothing to do with lightness of elements. we're not talking of burning anything. there certainly are chemicals that could be stored in a volume of a battery that have reactions with 10x or more the energy yield. the trick is to find the "half-cell" reactions that can be built into a battery

  • by mlts ( 1038732 ) * on Monday October 14, 2013 @02:13PM (#45123879)

    It isn't great, but I'd say it is better than nothing.

    Auto makers are genuinely afraid of battery technology, not to mention their bedfellows, Big Oil.

    Take solar for example. Yes, it produces energy, but if it isn't stored, oil/coal/gas is still the main source of energy come non-peak times. Add batteries with a high energy density, and places can run completely on their arrays.

    Of course, batteries that are within 1/10 the energy by volume of gasoline would drastically change transportation as we know it. Out goes the relatively wasteful Otto engine, in go electric motors which don't dump a good chunk of their energy out the exhaust pipe or through heat losses.

    There can be also things one can do with parked cars that can't be done now. When parked at night the cars can charge. If there is an overload on the grid, the cars can discharge batteries, putting additional usable juice on the wires until the batteries reach a set point (say 90% SOC or so.)

    In the past, refrigeration did not take hold for 20+ years after it was invented due to the tight grip of the ice-houses. Battery development is in a similar situation since if it does become near gasoline in energy density, larger energy generation spots can handle needs through economies of scale, and smaller places can remain off-grid, but still have reliable power.

Work without a vision is slavery, Vision without work is a pipe dream, But vision with work is the hope of the world.

Working...