Submission + - Google Releases VaultGemma, Its First Privacy-Preserving LLM (arstechnica.com)
Adding differential privacy to a model comes with drawbacks in terms of accuracy and compute requirements. No one has bothered to figure out the degree to which that alters the scaling laws of AI models until now. The team worked from the assumption that model performance would be primarily affected by the noise-batch ratio, which compares the volume of randomized noise to the size of the original training data. By running experiments with varying model sizes and noise-batch ratios, the team established a basic understanding of differential privacy scaling laws, which is a balance between the compute budget, privacy budget, and data budget. In short, more noise leads to lower-quality outputs unless offset with a higher compute budget (FLOPs) or data budget (tokens). The paper details the scaling laws for private LLMs, which could help developers find an ideal noise-batch ratio to make a model more private.