Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!


Forgot your password?
Businesses Transportation

Excessive Modularity Hindered Development of the 787 200

TAGmclaren writes "The Harvard Business Review is running a fascinating article exploring the issues facing Boeing's Dreamliner. Rather than simply blaming outsourcing, as much of the commentary has been focused on, the article delves into the benefits of integration and how being integrated when developing a new product gives engineers more degrees of freedom. From the article: 'Historically, Boeing understood that, and had worked with its subcontractors on that basis. If it was going to rely on them, it would provide them with detailed blueprints of the parts that were required — after Boeing had already created them. That, in turn, meant that Boeing had to design all the relevant pieces of the puzzle itself, first. But with the 787, it appears that Boeing tried a very different approach: rather than having the puzzle solved and asking the suppliers to provide a defined puzzle piece, they asked suppliers to create their own blueprints for parts. The puzzle hadn't been properly solved when Boeing asked suppliers for the pieces. It should come as little surprise then, that as the components came back from far-flung suppliers, for the first plane ever made of composite materials... those parts didn't all fit together. Time and cost blew out accordingly. It's easy to blame the outsourcing. But, in this instance, it wasn't so much the outsourcing, as it was the decision to modularize a complicated problem too soon.'"
This discussion has been archived. No new comments can be posted.

Excessive Modularity Hindered Development of the 787

Comments Filter:
  • Re:No specs? (Score:5, Informative)

    by idontgno ( 624372 ) on Wednesday January 30, 2013 @10:55AM (#42737489) Journal


    I'm a systems engineer, which means that integration is pretty much the only reason my job exists... for projects (hardware/software/everything) which are too big to continuously integrate. Projects that are modularized by design, and very often subcontracted as well.

    If the first time you're integrating your product is the first production run, you're too late. You should have had a prototype. You should treat the first production samples AS prototypes. (The wisdom of the "never buy the zero revision of anything" is in this.)

    But, yeah, that's expensive. It's cheaper to assume that every subassembly will be perfectly built to perfect specifications, and that interfaces just magically happen, and that integration is just sticking the pieces together and turning a few screws.

  • by sjbe ( 173966 ) on Wednesday January 30, 2013 @11:48AM (#42738043)

    When it comes to mechanical parts, geometric dimensioning and tolerancing is a solved problem. When it comes to electrical interoperability, one'd think that's a solved problem as well.

    "Solved problem"? HAAHAHAHHHAAHHAAAAA....

    You don't manufacture things for a living do you? I run a company that makes wire harnesses. We're a contract manufacturer - we don't design things, we just take prints and build what is on the prints. I can count on my fingers on one hand the number of prints we have gotten from customers which were correct and sufficiently detailed such that the product could be built without asking any questions. There pretty much always are critical details left out of the prints. About 2/3 of the prints we see have incompatible parts specified. About half are missing at least one important dimension such as length. About 10% have missing parts and about 25% have incompatible parts. About 20% specify needlessly expensive parts like gold plated terminals that cost more but provide no actual performance benefit. Most of them leave off at least one critical tolerance. I've even seen drawings with dimension in inches and tolerances in metric.

    Why does this happen? For the most part because an alarming number of engineers doing the drawings aren't actually very good at their job. Some of them are just plain lazy. The electrical engineers usually can specify a wire schematic but often have no idea whether something can actually be built or know much about industry standards. The more mechanical engineers (yes mechanical engineers can and do design circuits) tend to create bad designs and specify the wrong parts because they don't know any better. Sometimes they are trying to do a good job but they don't bother to consult manufacturing during the design process and they come up with a stupid design or something that is impossible to build.

    I have run into some good engineers but they are the exception.

Thus spake the master programmer: "When a program is being tested, it is too late to make design changes." -- Geoffrey James, "The Tao of Programming"