×
Education

IBM's Watson Goes To College To Extend Abilities 94

An anonymous reader writes in with news that IBM's Jeopardy winning supercomputer is going back to school"A modified version of the powerful IBM Watson computer system, able to understand natural spoken language and answer complex questions, will be provided to Rensselaer Polytechnic Institute in New York, making it the first university to receive such a system. IBM announced Wednesday that the Watson system is intended to enable upstate New York-based RPI to find new uses for Watson and deepen the systems' cognitive computing capabilities - for example by broadening the volume, types, and sources of data Watson can draw upon to answer questions."
IBM

Stanford Uses Million-Core Supercomputer To Model Supersonic Jet Noise 66

coondoggie writes "Stanford researchers said this week they had used a supercomputer with 1,572,864 compute cores to predict the noise generated by a supersonic jet engine. 'Computational fluid dynamics simulations test all aspects of a supercomputer. The waves propagating throughout the simulation require a carefully orchestrated balance between computation, memory and communication. Supercomputers like Sequoia divvy up the complex math into smaller parts so they can be computed simultaneously. The more cores you have, the faster and more complex the calculations can be. And yet, despite the additional computing horsepower, the difficulty of the calculations only becomes more challenging with more cores. At the one-million-core level, previously innocuous parts of the computer code can suddenly become bottlenecks.'"
Supercomputing

DOE Asks For 30-Petaflop Supercomputer 66

Nerval's Lobster writes "The U.S. Department of Science has presented a difficult challenge to vendors: deliver a supercomputer with roughly 10 to 30 petaflops of performance, yet filled with energy-efficient multi-core architecture. The draft copy (.DOC) of the DOE's requirements provide for two systems: 'Trinity,' which will offer computing resources to the Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL), during the 2016-2020 timeframe; and NERSC-8, the replacement for the current NERSC-6 'Hopper' supercomputer first deployed in 2010 for the DOE facilities. Hopper debuted at number five in the list of Top500 supercomputers, and can crunch numbers at the petaflop level. The DOE wants a machine with performance at between 10 to 30 times Hopper's capabilities, with the ability to support one compute job that could take up over half of the available compute resources at any one time."
Supercomputing

Three-Mile-High Supercomputer Poses Unique Challenges 80

Nerval's Lobster writes "Building and operating a supercomputer at more than three miles above sea level poses some unique problems, the designers of the recently installed Atacama Large Millimeter/submillimeter Array (ALMA) Correlator discovered. The ALMA computer serves as the brains behind the ALMA astronomical telescope, a partnership between Europe, North American, and South American agencies. It's the largest such project in existence. Based high in the Andes mountains in northern Chile, the telescope includes an array of 66 dish-shaped antennas in two groups. The telescope correlator's 134 million processors continually combine and compare faint celestial signals received by the antennas in the ALMA array, which are separated by up to 16 kilometers, enabling the antennas to work together as a single, enormous telescope, according to Space Daily. The extreme high altitude makes it nearly impossible to maintain on-site support staff for significant lengths of time, with ALMA reporting that human intervention will be kept to an absolute minimum. Data acquired via the array is archived at a lower-altitude support site. The altitude also limited the construction crew's ability to actually build the thing, requiring 20 weeks of human effort just to unpack and install it."
Supercomputing

Supercomputer Repossessed By State, May Be Sold In Pieces 123

1sockchuck writes "A supercomputer that was the third-fastest machine in the world in 2008 has been repossessed by the state of New Mexico and will likely be sold in pieces to three universities in the state. The state has been unable to find a buyer for the Encanto supercomputer, which was built and maintained with $20 million in state funding. The supercomputer had the enthusiastic backing of Gov. Bill Richardson, who saw the project as an economic development tool for New Mexico. But the commercial projects did not materialize, and Richardson's successor, Susana Martinez, says the supercomputer is a 'symbol of excess.'"
Supercomputing

Einstein@Home Set To Break Petaflops Barrier 96

hazeii writes "Einstein@home, the distributed computing project searching for the gravitational waves predicted to exist by Albert Einstein, looks set to breach the 1 Petaflops barrier around midnight UTC tonight. Put into context, if it was in the Top500 Supercomputers list, it would be in at number 24. I'm sure there are plenty of Slashdot readers who can contribute enough CPU and GPU cycles to push them well over 1,000 teraflops — and maybe even discover a pulsar in the process." From their forums: "At 14:45 we had 989.2 TFLOPS with an increase of 1.3 TFLOPS/h. In principle that's enough to reach 1001.1 TFLOPS at midnight (UTC) but very often, like yesterday, between 22:45 and 22:50 there occurs a drop of about 5 TFLOPS. So we will have very likely hit 1 PFLOPS in the early morning tomorrow. "
Space

All Systems Go For Highest Altitude Supercomputer 36

An anonymous reader writes "One of the most powerful supercomputers in the world has now been fully installed and tested at its remote, high altitude site in the Andes of northern Chile. It's a critical part of the Atacama Large Millimeter/submillimeter Array (ALMA), the most elaborate ground-based astronomical telescope in history. The special-purpose ALMA correlator has over 134 million processors and performs up to 17 quadrillion operations per second, a speed comparable to the fastest general-purpose supercomputer in operation today."
Supercomputing

Supercomputers' Growing Resilience Problems 112

angry tapir writes "As supercomputers grow more powerful, they'll also grow more vulnerable to failure, thanks to the increased amount of built-in componentry. Today's high-performance computing (HPC) systems can have 100,000 nodes or more — with each node built from multiple components of memory, processors, buses and other circuitry. Statistically speaking, all these components will fail at some point, and they halt operations when they do so, said David Fiala, a Ph.D student at the North Carolina State University, during a talk at SC12. Today's techniques for dealing with system failure may not scale very well, Fiala said."
Supercomputing

Titan Tops Top500 Supercomputing List 52

miller60 writes "The new Top500 list of the world's most powerful supercomputers is out, and the new champion is Titan, the new and improved system that previously ruled the Top500 as Jaguar. Oak Ridge Labs' Titan knocked Livermore Labs' Sequoia system out of the top spot, with a Linpack benchmark of more than 17 petaflops. Check out the full list, or an illustrated guide to the top 10."
Intel

Cray Unveils XC30 Supercomputer 67

Nerval's Lobster writes "Cray has unveiled a XC30 supercomputer capable of high-performance computing workloads of more than 100 petaflops. Originally code-named 'Cascade,' the system relies on Intel Xeon processors and Aries interconnect chipset technology, paired with Cray's integrated software environment. Cray touts the XC30's ability to utilize a wide variety of processor types; future versions of the platform will apparently feature Intel Xeon Phi and Nvidia Tesla GPUs based on the Kepler GPU computing architecture. Cray leveraged its work with DARPA's High Productivity Computing Systems program in order to design and build the XC30. Cray's XC30 isn't the only supercomputer aiming for that 100-petaflop crown. China's Guangzhou Supercomputing Center recently announced the development of a Tianhe-2 supercomputer theoretically capable of 100 petaflops, but that system isn't due to launch until 2015. Cray also faces significant competition in the realm of super-computer makers: it only built 5.4 percent of the systems on the Top500 list, compared to IBM with 42.6 percent and Hewlett-Packard with 27.6 percent."
China

China Building a 100-petaflop Supercomputer Using Domestic Processors 154

concealment writes "As the U.S. launched what's expected to be the world's fastest supercomputer at 20 petaflops, China is building a machine that is intended to be five times faster when it is deployed in 2015. China's Tianhe-2 supercomputer will run at 100 petaflops (quadrillion floating-point calculations per second), according to the Guangzhou Supercomputing Center, where the machine will be housed. Tianhe-2 could help keep China competitive with the future supercomputers of other countries, as industry experts estimate machines will start reaching 1,000-petaflop performance by 2018." And, naturally, it's planned to use a domestically developed MIPS processor
Supercomputing

Titan Supercomputer Debuts for Open Scientific Research 87

hypnosec writes "The Oak Ridge National Laboratory has unveiled a new supercomputer – Titan, which it claims is the world's most powerful supercomputer, capable of 20 petaflops of performance. The Cray XK7 supercomputer contains a total of 18,688 nodes and each node is based on a 16-core AMD Opteron 6274 processor and a Nvidia Tesla K20 Graphical Processing Unit (GPU). To be used for researching climate change and other data-intensive tasks, the supercomputer is equipped with more than 700 terabytes of memory."
Earth

Climate Change Research Gets Petascale Supercomputer 121

dcblogs writes "The National Center for Atmospheric Research (NCAR) has begun has begun using a 1.5 petaflop IBM system, called Yellowstone. For NCAR researchers it is an enormous leap in compute capability — a roughly 30x improvement over its existing 77 teraflop supercomputer. Yellowstone is capable of 1.5 quadrillion calculations per second using 72,288 Intel Xeon cores. The supercomputer gives researchers new capabilities. They can run more experiments with increased complexity and at a higher resolution. This new system may be able to reduce resolution to as much as 10 km (6.2 miles), giving scientists the ability to examine climate impacts in greater detail. Increase complexity allows researchers to add more conditions to their models, such as methane gas released from thawing tundra on polar sea ice. NCAR believes it is the world's most powerful computer dedicated to geosciences."
Moon

A Supercomputer On the Moon To Direct Deep Space Traffic 166

Hugh Pickens writes "NASA currently controls its deep space missions through a network of 13 giant antennas in California, Spain and Australia known as the Deep Space Network (DSN) but the network is obsolete and just not up to the job of transmitting the growing workload of extra-terrestrial data from deep space missions. That's why Ouliang Chang has proposed building a massive supercomputer in a deep dark crater on the side of the moon facing away from Earth and all of its electromagnetic chatter. Nuclear-powered, it would accept signals from space, store them, process them if needed and then relay the data back to Earth as time and bandwidth allows. The supercomputer would run in frigid regions near one of the moon's poles where cold temperatures would make cooling the supercomputer easier, and would communicate with spaceships and earth using a system of inflatable, steerable antennas that would hang suspended over moon craters, giving the Deep Space Network a second focal point away from earth. As well as boosting humanity's space-borne communication abilities, Chang's presentation at a space conference (PDF) in Pasadena, California also suggests that the moon-based dishes could work in unison with those on Earth to perform very-long-baseline interferometry, which allows multiple telescopes to be combined to emulate one huge telescope. Best of all the project has the potential to excite the imagination of future spacegoers and get men back on the moon."
Supercomputing

Parallella: an Open Multi-Core CPU Architecture 103

First time accepted submitter thrae writes "Adapteva has just released the architecture and software reference manuals for their many-core Epiphany processors. Adapteva's goal is to bring massively parallel programming to the masses with a sub-$100 16-core system and a sub-$200 64-core system. The architecture has advantages over GPUs in terms of future scaling and ease of use. Adapteva is planning to make the products open source. Ars Technica has a nice overview of the project."
AI

Google Puts Souped-Up Neural Networks To Work 95

holy_calamity writes "A machine learning breakthrough from Google researchers that grabbed headlines this summer is now being put to work improving the company's products. The company revealed in June that it had built neural networks that run on 16,000 processors simultaneously, enough power that they could learn to recognize cats just by watching YouTube. Those neural nets have now made Google's speech recognition for U.S. English 25 percent better, and are set to be used in other products, such as image search."
Supercomputing

India Plans To Build Fastest Supercomputer By 2017 135

First time accepted submitter darkstar019 writes "India is planning to build a computer that is going to be at least 61 times faster than the current fastest super computer, IBM Sequoia. Right now the most powerful supercomputer in India is 58th in the list of top 100 supercomputers. From the article: 'Telecom and IT Minister Kapil Sibal is understood to have written to Prime Minister Manmohan Singh sharing the roadmap to develop "petaflop and exaflop range of supercomputers" at an estimated cost of Rs 4,700 crore over 5 years.'"
Intel

TACC "Stampede" Supercomputer To Go Live In January 67

Nerval's Lobster writes "The Texas Advanced Computing Center plans to go live on January 7 with "Stampede," a ten-petaflop supercomputer predicted to be the most powerful Intel supercomputer in the world once it launches. Stampede should also be among the top five supercomputers in the TOP500 list when it goes live, Jay Boisseau, TACC's director, said at the Intel Developer Forum Sept. 11. Stampede was announced a bit more than two years ago. Specs include 272 terabytes of total memory and 14 petabytes of disk storage. TACC said the compute nodes would include "several thousand" Dell Stallion servers, with each server boasting dual 8-core Intel E5-2680 processors and 32 gigabytes of memory. In addition, TACC will include a special pre-release version of the Intel MIC, or "Knights Bridge" architecture, which has been formally branded as Xeon Phi. Interestingly, the thousands of Xeon compute nodes should generate just 2 teraflops worth of performance, with the remaining 8 generated by the Xeon Phi chips, which provide highly parallelized computational power for specialized workloads."
Supercomputing

A Look Inside Oak Ridge Lab's Supercomputing Facility 59

1sockchuck writes "Three of the world's most powerful supercomputers live in adjacent aisles within a single data center at Oak Ridge National Laboratory in Tennessee. Inside this facility, technicians are busy installing new GPUs into the Jaguar supercomputer, the final step in its transformation into a more powerful system that will be known as Titan. The Oak Ridge team expects the GPU-accelerated machine to reach 20 petaflops, which should make it the fastest supercomputer in the Top 500. Data Center Knowledge has a story and photos looking at this unique facility, which also houses the Kraken machine from the University of Tennessee and NOAA's Gaea supercomputer."
Space

GPU Supercomputer Could Crunch Exabyte of Data Daily For Square Kilometer Array 40

An anonymous reader writes "Researchers on the Square Kilometer Array project to build the world's largest radio telescope believe that a GPU cluster could be suited to stitching together the more than an exabyte of data that will be gathered by the telescope each day after its completion in 2024. One of the project heads said that graphics cards could be cut out for the job because of their high I/O and core count, adding that a conventional CPU-based supercomputer doesn't have the necessary I/O bandwidth to do the work."

Slashdot Top Deals